Capture Recapture estimation using finite mixtures of arbitrary dimension

Richard Arnold
Yu Hayakawa
Paul Yip

International Biometrics Society
Taupo, 30 Nov-3 Dec 2009
Outline

- Capture-Recapture experiments and models
- Reversible Jump MCMC
- Application: Software reliability
Capture-Recapture

- k repeated samples taken from a population
- Population size N is unknown
- D distinct individuals are seen
- Some seen on multiple occasions, some only once
- **Goal:** estimate population size N
Size of animal populations:
Samples are occasions on which animals are trapped, marked (for re-identification) and released.
N is the number of animals in the population.
Capture-Recapture: Applications

- **Size of animal populations:**
 Samples are occasions on which animals are trapped, marked (for re-identification) and released.
 N is the number of animals in the population.

- **Software testing:**
 Samples are independent software testers detecting errors.
 N is the number of errors in the piece of software.
An unknown number \((N - D)\) of zero rows: to be estimated.
Capture-Recapture

Observations form the $D \times k$ capture matrix

$$X_{ij} = \begin{cases}
1 & \text{if individual } i \text{ appears in sample } j \\
0 & \text{otherwise}
\end{cases}$$

Probability of capture

$$p_{ij} = \text{Probability individual } i \text{ is captured in sample } j$$

$$= p(X_{ij} = 1)$$

$$X_{ij} \sim \text{Bernoulli}(p_{ij})$$

$$p(X|P,N) = \frac{N!}{\prod x N_x!} \prod_{i=1}^{N} \prod_{j=1}^{k} p_{ij}^{x_{ij}} (1 - p_{ij})^{1 - x_{ij}}$$
1. All individuals are catchable

2. **Closed population**: no births/deaths or migration

3. No loss of marks (identifiable individuals)

4. No impact of sampling on capture probabilities (i.e. no behavioural responses)

 (Models do exist for violations of 2-4)
What makes this a difficult problem?
What makes this a difficult problem?

1. Heterogeneity
What makes this a difficult problem?

1. Heterogeneity

- **Individuals differ** – some are more easily caught: model M_h
What makes this a difficult problem?

1. Heterogeneity

- **Individuals differ** – some are more easily caught: model M_h
- **Samples differ** – some samples are more successful: model M_t
What makes this a difficult problem?

1. Heterogeneity

- **Individuals differ** – some are more easily caught: model M_h
- **Samples differ** – some samples are more successful: model M_t
- **Both sources** – model M_{th}
What makes this a difficult problem?

1. Heterogeneity

- Individuals differ – some are more easily caught: model M_h
- Samples differ – some samples are more successful: model M_t
- Both sources – model M_{th}

2. Identifiability

- N is identifiable within but not between model classes. e.g. finite vs. beta (infinite) mixture models for P
1. **Individuals** – animals/errors differ in their catchability

Individuals belong to A latent classes:

- Membership probabilities $\{\pi_a\}$
- Capture probabilities $\{\phi_a\}$

\[
f(p_i) = \sum_{a=1}^{A} \pi_a \delta(p_i - \phi_a)
\]

\[
\sum_{a=1}^{A} \pi_a = 1
\]
2. **Samples** – probability of capture varies between samples

- **Model** $M_{t[f]h}$: k fixed effects

 $$p_{ij} = \theta_{aj}$$
 $$\logit(\theta_{aj}) = \logit(\phi_a) + \beta_j + \gamma_{aj}$$

 Individual i is in latent class a
2. **Samples** – probability of capture varies between samples

- **Model** $M_{t[f]h}$: k fixed effects

 \[
 p_{ij} = \theta_{aj} \\
 \logit(\theta_{aj}) = \logit(\phi_a) + \beta_j + \gamma_{aj}
 \]

 Individual i is in latent class a

OR
2. **Samples** – probability of capture varies between samples

- **Model** $M_{t[f]h}$: k fixed effects

 \[
 p_{ij} = \theta_{aj} \\
 \logit(\theta_{aj}) = \logit(\phi_a) + \beta_j + \gamma_{aj}
 \]

 Individual i is in latent class a

 OR

- **Model** M_{th} B latent classes: membership probabilities $\{\lambda_b\}$ capture probabilities $\{\psi_b\}$

 \[
 p_{ij} = \theta_{ab} \\
 \logit(\theta_{ab}) = \logit(\phi_a) + \logit(\psi_b) - \logit(\phi_1) + \gamma_{ab}
 \]

 Individual i is in latent class a and
 Sample j is in latent class $b
Identifiability

- Ordering constraints on mixture component probabilities

 \[0 < \phi_1 < \ldots < \phi_A < 1 \]
 and
 \[\phi_1 = \psi_1 < \psi_2 < \ldots < \psi_B < 1 \]

 Implemented by ‘repulsive’ priors (following Green 1995)

 \[\phi | A \sim \text{EOS}(\text{Uniform}(0, 1)^{2A+1}) \]

 \{\phi_a\} are the even order statistics of \((2A + 1)\) draws from \(U(0, 1)\)

- Sum to zero constraints on fixed effects

 \[\sum_j \beta_j = \sum_a \gamma_{aj} = \sum_j \gamma_{aj} = 0 \]
 or

 \[\sum_a \gamma_{ab} = \sum_b \gamma_{ab} = 0 \]

 Ensured by degenerate Normal priors, e.g.

 \[\beta_j \sim \text{Normal}(0, \sigma^{'2}_{\beta}) \]
 with
 \[\sum j \beta_j = 0 \]
Priors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Constants</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Geometric($1 - \eta$)</td>
<td>$\eta = 0.999$</td>
<td>★ ★</td>
</tr>
<tr>
<td>A</td>
<td>Geometric($1 - \rho_h$)</td>
<td>$\rho_h = 0.8$</td>
<td>★ ★</td>
</tr>
<tr>
<td>B</td>
<td>Geometric($1 - \rho_h$)</td>
<td>$\rho_h = 0.8$</td>
<td>★ ★</td>
</tr>
<tr>
<td>$\pi</td>
<td>A$</td>
<td>Dirichlet(α_h)</td>
<td>$\alpha_h = \frac{3}{2}$</td>
</tr>
<tr>
<td>$\phi</td>
<td>A$</td>
<td>EOS(Uniform($0,1)^{2A+1}$)</td>
<td></td>
</tr>
<tr>
<td>σ^2_β</td>
<td>InverseGamma(v_β, κ_β)</td>
<td>$v_\beta = 3, \kappa_\beta = 40$</td>
<td>★</td>
</tr>
<tr>
<td>β</td>
<td>DegenNormal($k;0,\sigma^2_\beta$)</td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>$\lambda</td>
<td>B$</td>
<td>Dirichlet(α_t)</td>
<td>$\alpha_t = \frac{3}{2}$</td>
</tr>
<tr>
<td>$\psi</td>
<td>B, \phi_1$</td>
<td>EOS(Uniform($\phi_1,1)^{2B-1}$)</td>
<td></td>
</tr>
<tr>
<td>$\zeta</td>
<td>A, (B)$</td>
<td>Bernoulli(p_γ)</td>
<td>$p_\gamma = \frac{1}{2}$</td>
</tr>
<tr>
<td>$\gamma</td>
<td>\zeta, A, (B)$</td>
<td>DegenNormal($A,B;0,\sigma^2_\gamma$)</td>
<td>$\sigma_\gamma = 5$</td>
</tr>
<tr>
<td>$b</td>
<td>B, \lambda$</td>
<td>Discrete(${1, \ldots, B}; \lambda$)</td>
<td></td>
</tr>
</tbody>
</table>
Bayesian Estimation – RJMCMC

Estimation by Reversible Jump MCMC

- Draw from posterior

\[p(\{m, \Theta_m\} | X) \]

- Reversible Jump MCMC allows dimension switching moves:
 Addition/deletion of mixture components.

- 4 types of MCMC move in model \(M_h \).
RJMCMC Updates

MCMC Step

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_1^{(1)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_2^{(1)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_3^{(1)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

<table>
<thead>
<tr>
<th>MCMC Step</th>
<th>1</th>
<th>2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_1^{(1)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(2)}$</td>
</tr>
<tr>
<td>$\theta_2^{(1)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(2)}$</td>
</tr>
<tr>
<td>$\theta_3^{(1)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(2)}$</td>
</tr>
</tbody>
</table>
RJMCMC Updates

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_1^{(1)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(3)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_2^{(1)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(3)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_3^{(1)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(3)}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th>MCMC Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1^{(1)})</td>
<td>(\theta_1^{(2)})</td>
<td>(\theta_1^{(3)})</td>
<td>(\theta_1^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_2^{(1)})</td>
<td>(\theta_2^{(2)})</td>
<td>(\theta_2^{(3)})</td>
<td>(\theta_2^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_3^{(1)})</td>
<td>(\theta_3^{(2)})</td>
<td>(\theta_3^{(3)})</td>
<td>(\theta_3^{(4)})</td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ₁⁽¹⁾</td>
<td>θ₁⁽²⁾</td>
<td>θ₁⁽³⁾</td>
<td>θ₁⁽⁴⁾</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>θ₂⁽¹⁾</td>
<td>θ₂⁽²⁾</td>
<td>θ₂⁽³⁾</td>
<td>θ₂⁽⁴⁾</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>θ₃⁽¹⁾</td>
<td>θ₃⁽²⁾</td>
<td>θ₃⁽³⁾</td>
<td>θ₃⁽⁴⁾</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1^{(1)})</td>
<td>(\theta_1^{(2)})</td>
<td>(\theta_1^{(3)})</td>
<td>(\theta_1^{(4)})</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>(\theta_2^{(1)})</td>
<td>(\theta_2^{(2)})</td>
<td>(\theta_2^{(3)})</td>
<td>(\theta_2^{(4)})</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>(\theta_3^{(1)})</td>
<td>(\theta_3^{(2)})</td>
<td>(\theta_3^{(3)})</td>
<td>(\theta_3^{(4)})</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

RJMCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^{(1)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:1}^{(1)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:2}^{(1)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1^{(1)})</td>
<td>(\theta_1^{(2)})</td>
<td>(\theta_1^{(3)})</td>
<td>(\theta_1^{(4)})</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(\theta_2^{(1)})</td>
<td>(\theta_2^{(2)})</td>
<td>(\theta_2^{(3)})</td>
<td>(\theta_2^{(4)})</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(\theta_3^{(1)})</td>
<td>(\theta_3^{(2)})</td>
<td>(\theta_3^{(3)})</td>
<td>(\theta_3^{(4)})</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

RJMCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^{(1)})</td>
<td>(m^{(2)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:1}^{(1)})</td>
<td>(\theta_{m^{(2)}:1}^{(2)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:2}^{(1)})</td>
<td>(\theta_{m^{(2)}:2}^{(2)})</td>
<td>(\theta_{m^{(2)}:3}^{(2)})</td>
<td>(\theta_{m^{(2)}:4}^{(2)})</td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>$\theta_1^{(1)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(3)}$</td>
<td>$\theta_1^{(4)}$</td>
<td>...</td>
</tr>
<tr>
<td>θ_2</td>
<td>$\theta_2^{(1)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(3)}$</td>
<td>$\theta_2^{(4)}$</td>
<td>...</td>
</tr>
<tr>
<td>θ_3</td>
<td>$\theta_3^{(1)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(3)}$</td>
<td>$\theta_3^{(4)}$</td>
<td>...</td>
</tr>
</tbody>
</table>

RJMCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$m^{(1)}$</td>
<td>$m^{(2)}$</td>
<td>$m^{(3)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>$\theta^{(1)}_{m^{(1)}:1}$</td>
<td>$\theta^{(2)}_{m^{(2)}:1}$</td>
<td>$\theta^{(3)}_{m^{(3)}:1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>$\theta^{(1)}_{m^{(1)}:2}$</td>
<td>$\theta^{(2)}_{m^{(2)}:2}$</td>
<td>$\theta^{(3)}_{m^{(3)}:2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>$\theta^{(1)}_{m^{(1)}:3}$</td>
<td>$\theta^{(2)}_{m^{(2)}:3}$</td>
<td>$\theta^{(3)}_{m^{(3)}:3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>$\theta^{(1)}_{m^{(1)}:4}$</td>
<td>$\theta^{(2)}_{m^{(2)}:4}$</td>
<td>$\theta^{(3)}_{m^{(3)}:4}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th>MCMC Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1^{(1)})</td>
<td>(\theta_1^{(2)})</td>
<td>(\theta_1^{(3)})</td>
<td>(\theta_1^{(4)})</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>(\theta_2^{(1)})</td>
<td>(\theta_2^{(2)})</td>
<td>(\theta_2^{(3)})</td>
<td>(\theta_2^{(4)})</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>(\theta_3^{(1)})</td>
<td>(\theta_3^{(2)})</td>
<td>(\theta_3^{(3)})</td>
<td>(\theta_3^{(4)})</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

RJMCMC Step

<table>
<thead>
<tr>
<th>RJMCMC Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^{(1)})</td>
<td>(m^{(2)})</td>
<td>(m^{(3)})</td>
<td>(m^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:1}^{(1)})</td>
<td>(\theta_{m^{(2)}:1}^{(2)})</td>
<td>(\theta_{m^{(3)}:1}^{(3)})</td>
<td>(\theta_{m^{(4)}:1}^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(1)}:2}^{(1)})</td>
<td>(\theta_{m^{(2)}:2}^{(2)})</td>
<td>(\theta_{m^{(3)}:2}^{(3)})</td>
<td>(\theta_{m^{(4)}:2}^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(2)}:3}^{(2)})</td>
<td>(\theta_{m^{(2)}:3}^{(3)})</td>
<td>(\theta_{m^{(2)}:3}^{(4)})</td>
<td>(\theta_{m^{(4)}:3}^{(4)})</td>
<td></td>
</tr>
<tr>
<td>(\theta_{m^{(2)}:4}^{(2)})</td>
<td>(\theta_{m^{(2)}:4}^{(3)})</td>
<td>(\theta_{m^{(2)}:4}^{(4)})</td>
<td>(\theta_{m^{(4)}:4}^{(4)})</td>
<td></td>
</tr>
</tbody>
</table>
RJMCMC Updates

MCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_1^{(1)}$</td>
<td>$\theta_1^{(2)}$</td>
<td>$\theta_1^{(3)}$</td>
<td>$\theta_1^{(4)}$</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>$\theta_2^{(1)}$</td>
<td>$\theta_2^{(2)}$</td>
<td>$\theta_2^{(3)}$</td>
<td>$\theta_2^{(4)}$</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>$\theta_3^{(1)}$</td>
<td>$\theta_3^{(2)}$</td>
<td>$\theta_3^{(3)}$</td>
<td>$\theta_3^{(4)}$</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

RJMCMC Step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m^{(1)}$</td>
<td>$m^{(2)}$</td>
<td>$m^{(3)}$</td>
<td>$m^{(4)}$</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>$\theta_{m^{(1)}:1}$</td>
<td>$\theta_{m^{(2)}:1}$</td>
<td>$\theta_{m^{(3)}:1}$</td>
<td>$\theta_{m^{(4)}:1}$</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>$\theta_{m^{(1)}:2}$</td>
<td>$\theta_{m^{(2)}:2}$</td>
<td>$\theta_{m^{(3)}:2}$</td>
<td>$\theta_{m^{(4)}:2}$</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>$\theta_{m^{(1)}:3}$</td>
<td>$\theta_{m^{(2)}:3}$</td>
<td>$\theta_{m^{(3)}:3}$</td>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta_{m^{(2)}:4}$</td>
<td>$\theta_{m^{(3)}:4}$</td>
<td>…</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1) Shift a support point
(2) Exchange probability between points
(3) Split a support point

\[\pi_{a-1} \rightarrow \pi_{a} \rightarrow \pi_{a+1} \]

\[\phi_{a-1} \rightarrow \phi_{a} \rightarrow \phi_{a+1} \]

\[s, (1-u_1)s, u_2(1-s) \]
(4) Merge two support points
Estimation of finite mixture models affected if the MCMC sampler can’t mix because of

- artificial identifiability constraints,
 (e.g. so that individuals/samples become persistently misallocated) or
- updating protocols making one mode inaccessible from another.
Label switching and poor mixing

Estimation of finite mixture models affected if the MCMC sampler cannot mix because of

- artificial identifiability constraints, (e.g. so that individuals/samples become persistently misallocated) or
- updating protocols making one mode inaccessible from another.

In our case:

- Mixture components are labelled by a single parameter: have a natural ordering (e.g. preventing misallocations);
- Dimension-switching RJMCMC allows components to be deleted and reappear – the chain moves rapidly around model space.
$k = 6$ reviewers tested switches and found $D = 43$ errors (Basu 1998)

<table>
<thead>
<tr>
<th>Error</th>
<th>Reviewer j</th>
<th>x_i</th>
<th></th>
<th>Error</th>
<th>Reviewer j</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0 0 0 0 0</td>
<td>1</td>
<td>23</td>
<td>0 0 0 0 0 0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 1 0 1</td>
<td>2</td>
<td>24</td>
<td>0 0 0 0 1 0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 1 0</td>
<td>1</td>
<td>25</td>
<td>0 0 0 1 1 0 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
<td>26</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
<td>27</td>
<td>0 0 0 1 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
<td>28</td>
<td>0 0 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
<td>29</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
<td>30</td>
<td>1 0 0 1 1 0 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
<td>31</td>
<td>1 0 0 1 0 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
<td>32</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>33</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
<td>34</td>
<td>0 0 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>35</td>
<td>0 0 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
<td>36</td>
<td>0 0 0 0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>37</td>
<td>0 0 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>38</td>
<td>1 0 0 0 0 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1 1 0 1 1 1</td>
<td>1</td>
<td>39</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1 0 0 0 0 1</td>
<td>2</td>
<td>40</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
<td>41</td>
<td>0 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
<td>42</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>43</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1 0 0 1 0 0</td>
<td>2</td>
<td>44</td>
<td>n_j = 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1

$$\log L = -91.9596431614535$$

π

θ

Rh(2)

$N=43$
Step 2

\[\log L = -67.92296466689119 \]

\[
\begin{array}{c}
\pi \\
0.0 & 0.4 & 0.8 \\
\hline
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\(\theta \)

Rh(4)
N= 44
Step 3

$$\log L = -58.1418394830594$$

Rh(5)
N = 46
Step 4

\[
\log L = -60.4784899550032
\]

Rh(6)
N = 44
Step 5

log L = -58.7074675287983

Rh(7)
N = 45
Step 6

\[\log L = -60.0611555129325 \]

Diagram showing points at various \(\theta \) values with corresponding \(\pi \) values for Rh(6), \(N = 46 \).
Step 7

\[\log L = -58.0130422680327 \]

Rh(5)
N = 47
Step 8

\[\log L = -55.1097509120916 \]

![Graph showing \(\theta \) and \(\pi \) with Rh(5) and N=44]
Step 9

$$\log L = -49.5727659877251$$

π 0.0 0.4 0.8

θ

0.0 0.2 0.4 0.6 0.8 1.0

$Rh(6)$

$N= 46$
Step 10

\[
\log L = -46.5488986935539
\]

- θ
- π
- $\log L = -46.5488986935539$
- Rh(6)
- $N = 45$
Step 11

\[\log L = -45.664424798022 \]

Graph:
- \(\pi \) on the vertical axis
- \(\theta \) on the horizontal axis
- Points at \(\theta \) values 0.2, 0.4, 0.6, 0.8, 1.0 with corresponding \(\pi \) values
- \(Rh(6) \)
- \(N = 46 \)
Step 12

\[\log L = -45.0363060198825 \]

\[\pi \]

\[N = 47 \]

\[\text{Rh(6)} \]
Step 13

\[\log L = -44.6636665499824 \]

\[\pi \]

\[N = 47 \]

\[\text{Rh}(7) \]
$\log L = -47.0076330888468$
Step 15

$log L = -47.6636985662387$

Rh(7)
N = 48
Step 16

$log L = -45.737454851479$

![Graph showing data points with labels Rh(8) and N=44]
Step 17

\[\log L = -42.4371645695473 \]

Rh(7)
N = 48
log L = −41.4345231830313
Step 19

\[\log L = -39.3970709062431 \]

Diagram showing

- \(\pi \)
- \(0.0 \), \(0.4 \), \(0.8 \)
- \(\theta \)
- \(0.0 \), \(0.2 \), \(0.4 \), \(0.6 \), \(0.8 \), \(1.0 \)
- Rh(5)
- \(N = 48 \)
Step 20

\[\log L = -40.5227716139258 \]
Step 21

\[\log L = -37.5693882100671 \]

\begin{center}
\begin{tikzpicture}
\draw[very thick, ->] (0,0) -- (1.5,0) node[below] {θ};
\draw[very thick, ->] (0,0) -- (0,1.5) node[left] {π};
\filldraw[black] (0.2,0.7) circle (2.5pt);
\filldraw[black] (0.4,0.3) circle (2.5pt);
\filldraw[black] (0.6,0.1) circle (2.5pt);
\filldraw[black] (0.8,0.05) circle (2.5pt);
\filldraw[black] (1.0,0.2) circle (2.5pt);
\node at (1.5,1.0) {Rh(7)};
\node at (1.5,0.8) {N= 44};
\end{tikzpicture}
\end{center}
Step 22

\[\log L = -36.4306162111048 \]

\[\text{Rh(7)} \]
\[N = 47 \]
Step 23

\[\log L = -33.0389452678949 \]

\[\theta \]

\[\pi \]

\[N = 46 \]

Rh(5)
Step 24

\[\log L = -32.9077337310434 \]

![Graph showing \(\pi \) vs. \(\theta \) with \(N = 52 \) and \(\text{Rh}(6) \)]
Step 25

\[\log L = -30.4732050323583 \]

\[\theta \]

\[\pi \]

\[Rh(7) \]
\[N= 44 \]
log L = -28.4096812545929

Rh(8)
N= 47
log L = −27.59453640333

Rh(7)
N= 46
Step 28

$$\log L = -27.1528912375878$$

![Graph](image-url)
Step 29

$$\log L = -26.2582030338909$$

![Graph showing data points for \(\pi \) and \(\theta \) with \(N = 52 \).]
Step 30

$log L = -25.7864676274672$

Rh(3)
N= 51
log L = −22.3220481167324

Rh(3)
N= 48
Step 32

\[\log L = -19.8536269710666 \]

\[\theta \]

\[\pi \]

\[Rh(4) \]

\[N= 49 \]
Step 33

\[\log L = -22.6319674062755 \]

\[\text{Rh}(3) \]
\[N = 51 \]
log L = \(-20.6214301093238\)
Step 35

\[
\log L = -10.2673835002677
\]

\[Rh(3)\]

\[N= 59\]
Step 36

$log L = -10.819486250473$

Rh(4)
N = 64
Step 37

\[\log L = -11.5513213071656 \]
Step 38

\[\log L = -9.16791808262374 \]

\[\text{Rh}(3) \]
\[N = 62 \]
Step 39

\[\log L = -11.3187838098980 \]

\[\theta \]

\[\pi \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

\[N = 55 \]

Rh(2)
Step 40

\[\log L = -6.50771712565023 \]

![Graph showing \(\pi \) vs. \(\theta \) with a dot at \(\theta = 0.2 \) and \(N = 66 \).]
Step 41

\[\log L = -7.77292212428978 \]

\[\pi \]

\[\theta \]

\[\text{Rh(1)} \]

\[N = 79 \]
log $L = -9.07442912991769$

Rh(2)

N = 58
log L = -6.7347692978596
log $L = -6.85775153090216$

![Graph showing π and θ with Rh(3) and N=80 annotations.](image)
Step 45

\[\log L = -6.44686591772984 \]

\[\pi \]

Rh(1)

\[N = 68 \]

\[\theta \]
Step 46

\[\log L = -8.34608316367388 \]

\[\theta \]

\[\pi \]

\[\rho(1) \]

\[N = 106 \]
Step 47

\[\log L = -7.24947491612883 \]

\[\pi \]

Rh(1)
N= 93

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

\[0.0 \quad 0.4 \quad 0.8 \]

\[\theta \]

\[\text{log L} = -7.24947491612883 \]
Step 48

\[\log L = -8.68619170427243 \]

\[\theta \]

\[\pi \]

\[N = 77 \]

\[\text{Rh(1)} \]
Step 49

\[\log L = -7.03769307699849 \]

\(\theta \)

\(\pi \)

\(\text{Rh}(1) \)

\(N = 80 \)
Step 50

\[\log L = -6.54071271014857 \]

Rh(1)
N = 66
Step 51

\[\log L = -6.99200544598219 \]

The graph shows a plot of \(\pi \) against \(\theta \) with a point at \(\pi = 0.2 \) and \(\theta = 0.2 \), indicating \(\text{Rh(1)} \) and \(N = 89 \).
Step 52

\[\log L = -6.92828015307384 \]

\[\pi \]

\[\theta \]

Rh(1)
N = 65
Step 53

\[
\log L = -7.0832078891851
\]

Rh(2)
N = 76
Step 54

\[\log L = -6.47554471024264 \]

\[Rh(1) \]
\[N = 72 \]
log L = -6.7014630905897

Rh(1)
N = 65
Step 56

$$\log L = -5.64197053930326$$

Rh(2)
N= 81
Step 57

\[\log L = -5.96373888768323 \]

\[\pi \]

\[N = 69 \]
log L = -8.84591665324345

\[\pi \]

N = 67

Rh(1)
Step 59

\[\log L = -7.64672016924314 \]

Rh(1)
N = 57
log L = -6.73174374308653

Rh(1)
N= 74
log $L = -6.55142574603127$

π

θ

$N = 72$

Rh(1)
Step 62

\[
\log L = -6.69541020421036
\]

\[
\pi
\]

\[
\theta
\]

Rh(1)

N = 83
\[
\log L = -6.8475622252277
\]
Step 64

\[\log L = -5.22857102139116 \]

\[\pi \]

\[\theta \]

Rh(2)

N= 83
Step 65

\[\log L = -4.81063005314064 \]

\[\theta \]

\[\pi, \mu, \theta \]

\[\text{Rh(3)} \]

\[N = 77 \]
Step 66

\[\log L = -5.46413707072475 \]

\[\pi \\
0.0 \ 0.4 \ 0.8 \]

\[\theta \\
0.0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0 \]

\[\text{Rh}(2) \]
\[N=93 \]
log L = \(-7.88242747736024\)
Step 68

$$\log L = -6.48263347003243$$

Diagram showing a plot with markers labeled π and θ. The plot indicates data points with $N=91$.
Step 69

\[\log L = -7.91704677251013 \]

![Graph showing \(\pi \) vs. \(\theta \) with points at \(\pi \approx 0.2 \) and \(\theta \approx 0.1 \), labeled as \(\text{Rh}(2) \) with \(N = 99 \).]
Step 70

\[\log L = -7.41664781432527 \]

\[\pi \]

\[\theta \]
log L = −7.36978157074631
log L = \(-7.42029372486004\)
log L = -6.50030323887847

Rh(1)
N = 77
Step 74

\[\log L = -7.08379337128636 \]

\[\pi \]

0.0 0.4 0.8

\[\theta \]

0.0 0.2 0.4 0.6 0.8 1.0

Rh(1)
N= 61
Step 75

\[\log L = -6.98594579627081 \]

Diagram:
- \(\pi \) vs \(\theta \)
- Point labeled \(\text{Rh(1)} \)
- \(N = 63 \)
Step 76

$$\log L = -8.07461582671763$$

Rh(1)
N= 87
log L = -8.69088322869459

Rh(3)
N = 137
\[
\log L = -9.06991579820229
\]

Rh(3)

\[N = 185 \]
log L = -6.59579706710454

Rh(2)
N= 141
Step 80

\[\log L = -6.72727099921829 \]

-log L = -6.72727

\begin{align*}
\pi & \quad 0.0 \quad 0.4 \quad 0.8 \\
0.0 & \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0
\end{align*}

Rh(2)

N = 142
\[\log L = -6.37796903283765 \]
log $L = -8.43700588880688$
log $L = -6.2297006532936$
\log L = -6.59598781624027

\pi

\theta

Rh(2)
N= 119
Step 85

\[\log L = -6.53657057131011 \]

Graph with coordinates:
- \(\pi \) vs \(\theta \)
- Points at \(\pi = 0, 0.4, 0.8 \)
- \(\theta \) ranging from 0.0 to 1.0
- \(\text{Rh(2)} \) with \(N = 106 \)
Step 86

$$\log L = -6.49950133785143$$

\[\pi \quad 0.0 \quad 0.4 \quad 0.8 \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

Rh(1)

N= 69
Step 87

$\log L = -5.86507082741511$

π

θ

Rh(2)

$N = 68$
\[\log L = -5.15535623326514 \]

- The plot shows a point at \(\theta \approx 0.2 \) with \(\pi \approx 0.8 \).
- The point is labeled with \(\text{Rh}(2) \) and \(N = 99 \).
Step 89

\[\log L = -7.52915403726294 \]

Diagram:

\(\pi \)

\(\theta \)

\(\text{Rh}(1) \)

\(N = 97 \)
log L = −5.42621622335881

Rh(2)
N= 81
\[\log L = -7.53051945806166 \]
Step 92

\[\log L = -6.48125416952934 \]

\[\theta \]

Rh(1)

N = 67
Step 93

$\log L = -5.56786282597483$

π

0.0 0.2 0.4 0.6 0.8 1.0

θ

$N = 94$

$\text{Rh}(2)$
log L = -7.61592304565889

Rh(2)
N= 137
Step 95

$$\log L = -7.14847973079398$$

θ

Rh(3)

$N = 148$
\[\log L = -6.96778206285407 \]
Step 97

$log L = -7.71918326510837$

π

0.0 0.2 0.4 0.6 0.8 1.0

θ

0.0 0.4 0.8

$Rh(3)$

$N = 137$
\[\log L = -9.8181414985707 \]
log $L = -6.64868771633988$
Step 100

\[\log L = -5.83175113202486 \]

\[Rh(2) \]
\[N = 111 \]
M_{th}: 2-way finite mixture
Application: AT&T Switch Testing

$M_{t[f]h}$: 1-way finite mixture with fixed sample effects

![Bar chart showing probability distribution for $M_{t[f]h}$ with different values of A.]
Posterior Model Probabilities

<table>
<thead>
<tr>
<th>A</th>
<th>(p(A, \zeta \mid X, M_t \mid h))</th>
<th>(p(A, B, \zeta \mid X, M_{th}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B =)</td>
<td>(\zeta = 0)</td>
<td>(\zeta = 1)</td>
</tr>
<tr>
<td>1</td>
<td>58.3</td>
<td>27.5</td>
</tr>
<tr>
<td>2</td>
<td>29.0</td>
<td>8.9</td>
</tr>
<tr>
<td>3</td>
<td>9.2</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Posterior Means

A	$E[N	X, M_{t[f	n]}]$	$E[N	X, M_{th}]$							
	$\zeta = 0$	$\zeta = 1$	$\zeta = 0$	$\zeta = 1$								
1	67.8	78.5	65.9	64.7	64.3	64.2	64.2	79.4	79.2	76.8	76.9	75.9
2	78.6	103.6	72.1	70.5	70.1	70.0	70.0	76.1	81.4	82.9	83.4	80.0
3	79.6	100.0	71.2	69.8	69.2	68.3	70.4	75.6	85.8	77.8	73.6	72.8
4	78.1	71.0	70.8	67.7	67.5	68.9	75.6	78.8	75.6	67.0	69.7	
5	75.5	68.4	67.1	69.5	64.7	64.0	67.5	78.8	75.6	67.0	69.7	
6	75.0	70.2	64.9	62.0	67.8	58.0	65.0	91.3	78.2	64.5	66.1	
7	76.4	62.0										
8	84.0											
9	83.0											
10	64.0											
Population size estimates \hat{N} in fixed and variable dimension models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean</th>
<th>Med.</th>
<th>95% CI</th>
<th>Npar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>78.5</td>
<td>76</td>
<td>(63,101)</td>
<td>2</td>
</tr>
<tr>
<td>M_{t_2}</td>
<td>65.9</td>
<td>66</td>
<td>(54,97)</td>
<td>10</td>
</tr>
<tr>
<td>M_{t_3}</td>
<td>64.7</td>
<td>64</td>
<td>(55,77)</td>
<td>12</td>
</tr>
<tr>
<td>M_{t_4}</td>
<td>64.3</td>
<td>62</td>
<td>(60,64)</td>
<td>14</td>
</tr>
<tr>
<td>$M_{t_2}+h_2$</td>
<td>72.1</td>
<td>70</td>
<td>(63,77)</td>
<td>12</td>
</tr>
<tr>
<td>$M_{t_2}\times h_2$</td>
<td>79.4</td>
<td>73</td>
<td>(55,122)</td>
<td>13</td>
</tr>
<tr>
<td>M_{th}</td>
<td>68.7</td>
<td>66</td>
<td>(51,103)</td>
<td></td>
</tr>
<tr>
<td>$M_{t[f]}$</td>
<td>67.8</td>
<td>66</td>
<td>(52,94)</td>
<td>8</td>
</tr>
<tr>
<td>$M_{t[f]}+h_2$</td>
<td>78.6</td>
<td>74</td>
<td>(54,129)</td>
<td>10</td>
</tr>
<tr>
<td>$M_{t[f]}\times h_2$</td>
<td>72.4</td>
<td>69</td>
<td>(52,114)</td>
<td>15</td>
</tr>
</tbody>
</table>
Posterior distribution of N
Application: AT&T Switch Testing

- Models M_{th} and M_{tfh} both predict of the order 70 errors in total (95% credible intervals [51,103] and [52,114])

- \sim 30 errors not so far detected

- Evidence for heterogeneity among reviewers, but not amongst faults

- Bayes Factor $BF(M_{th} : M_{tfh}) = 0.42$: neither model class convincingly favoured.
Skills of the 6 reviewers

Capture Probability

![Graph showing the skills distribution of 6 reviewers.](image)
Application: Snowshoe Hares

![Graph showing distribution of N given X for different values of A (1, 2, 3). The x-axis represents N, and the y-axis represents p(N|X). There are two lines representing M_{th} and M_{th} with different styles.](image-url)
Interval estimates – 3 examples

![Graph showing interval estimates for Hares, AT&T, and Rabbits]
Interval estimates – 3 examples

N

0 50 100 150 200

Hares

AT&T

Rabbits

N

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
RJMCMC is a practicable means for model selection/averaging in Capture-Recapture with finite mixtures.

Doesn’t solve non-identifiability between model classes

Priors regularise the likelihood – adding extra components does not affect estimates much.